Системы искусственного интеллекта

       

Организация знаний в рабочей системе


Рабочая память (РП) экспертных систем предназначена для хранения данных. Данные в рабочей памяти могут быть однородны или разделяются на уровни по типам данных. В последнем случае на каждом уровне рабочей памяти хранятся данные соответствующего типа. Выделение уровней усложняет структуру экспертной системы, но делает систему более эффективной. Например, можно выделить уровень планов , уровень агенды (упорядоченного списка правил, готовых к выполнению) и уровень данных предметной области (уровень решений).

В современных экспертных системах данные в рабочей памяти рассматриваются как изолированные или как связанные. В первом случае рабочая память состоит из множества простых элементов , а во втором - из одного или нескольких (при нескольких уровнях в РП) сложных элементов (например, объектов). При этом сложный элемент соответствует множеству простых, объединенных в единую сущность. Теоретически оба подхода обеспечивают полноту, но использование изолированных элементов в сложных предметных областях приводит к потере эффективности.

Данные в РП в простейшем случае являются константами и (или) переменными. При этом переменные могут трактоваться как характеристики некоторого объекта, а константы - как значения соответствующих характеристик. Если в РП требуется анализировать одновременно несколько различных объектов, описывающих текущую проблемную ситуацию, то необходимо указывать, к каким объектам относятся рассматриваемые характеристики. Одним из способов решения этой задачи является явное указание того, к какому объекту относится характеристика.

Если РП состоит из сложных элементов, то связь между отдельными объектами указывается явно, например заданием семантических отношений. При этом каждый объект может иметь свою внутреннюю структуру. Необходимо отметить, что для ускорения поиска и сопоставления данные в РП могут быть связаны не только логически, но и ассоциативно.

 
 



Содержание раздела