Методы исследования нейроподобных сетей.
Для исследования построенной модели сети (с заданными характеристиками элементов, архитектурой и обучающими правилами) применяют три основных метода: аналитическое исследование, а также математическое (имитационное) и физическое моделирование. Сложность аналитического исследования рассматриваемых нами моделей с коллективным поведением обусловлена наличием большого числа взаимодействующих нелинейных нейроподобных элементов. Несмотря на это интересные аналитические результаты получены для многих из рассматриваемых далее моделей нейронных сетей, что в значительной степени способствовало их популярности.
Физическое моделирование позволяет быстро получать достоверные результаты работы модели, однако связано с технической сложностью аппаратной реализации большого количества нейроподобных элементов со многими адаптивными связями.
Математическое моделирование на универсальных ЭВМ дает возможность создать практически любые модели нейронных сетей, однако из-за последовательного характера их работы в обозримое время удается исследовать модели ограниченного размера. В настоящее время существуют и продолжают создаваться специальные вычислительные средства для эффективного моделирования больших нейроподобных сетей, а также реализованные в виде микросхем очень быстродействующие аппаратные модели небольших нейросетей.